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In this paper we propose Timed Rebeca as an extension of the Rebeca language that
can be used to model distributed and asynchronous systems with timing constraints.
Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm,
where the structure of the model represents the service oriented architecture, while the
computational model matches the network infrastructure. The modeller can specify both
computational and network delay, and assign deadlines for serving a request. We provide
the formal semantics of the language using Structural Operational Semantics, and show
its expressiveness by means of examples. We developed a tool for automated translation
from Timed Rebeca to the Erlang language, which provides a first implementation of
Timed Rebeca. We can use the tool to set the parameters of Timed Rebeca models, which
represent the environment and component variables, and use McErlang to run multiple
simulations for different settings. The results of the simulations can then be employed to
select the most appropriate values for the parameters in the model. Simulation is shown to
be an effective analysis support, specially where model checking faces almost immediate
state explosion in an asynchronous setting.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents an extension of the actor-based Rebeca language [1,2] that can be used to model distributed and
asynchronous systems with timing constraints. This extension of Rebeca is motivated by the ubiquitous presence of real-time
computing systems, whose behaviour depends crucially on timing as well as functional requirements.

A well-established paradigm for modelling the functional behaviour of distributed and asynchronous systems is the
actor model. This model was originally introduced by Hewitt [3] as an agent-based language, and is a mathematical model
of concurrent computation that treats actors as the universal primitives of concurrent computation [4]. In response to a
message that it receives, an actor can make local decisions, create more actors, send more messages, and determine how
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to respond to the next message it receives. Actors have encapsulated states and behaviour, and are capable of redirecting
communication links through the exchange of actor identities. Different interpretations, dialects and extensions of actor
models have been proposed in several domains and are claimed to be the most suitable modells of computation for some
of the dominating applications, such as multi-core programming and web services [5].

Reactive Objects Language, Rebeca [1], is an operational interpretation of the actor model with formal semantics and
model-checking tools. Rebeca is designed to bridge the gap between formal methods and software engineers. The for-
mal semantics of Rebeca is a solid basis for its formal verification. Compositional and modular verification, abstraction,
symmetry and partial-order reduction have been investigated for verifying Rebeca models. The theory underlying these ver-
ification methods is already established and is embodied in verification tools [6,7,1]. With its simple, message-driven and
object-based computational model, Java-like syntax, and accompanying set of verification tools, Rebeca is an interesting and
easy-to-learn model for practitioners.

Motivation and contribution Although actors are attracting more and more attention both in academia and industry, little
work has been done on timed actors and even less on analyzing timed actor-based models. In this work we present

• Timed Rebeca by extending Rebeca with time constraints,
• the formal semantics of Timed Rebeca using Structural Operational Semantics (SOS) [8],
• a tool for mapping Timed Rebeca models to Erlang,
• examples of applications of Timed Rebeca to different small and medium sized case studies, and
• experimental results from the simulation of the resulting Timed Rebeca models using McErlang [9].

The main contribution of this work is offering a pure asynchronous actor-based modelling language with timing prim-
itives and analysis support. Timed Rebeca can be used in a model-driven methodology in which the designer builds an
abstract model where each component is a reactive object communicating through non-blocking asynchronous messages.
The structure of the model can very well represent service oriented architectures, while the computational model matches
the network infrastructure. Hence the model captures faithfully the behaviour of the system in a distributed and asyn-
chronous world.

This paper is an extended version of [10]. The main extensions are presenting a formal mapping as a syntax-directed
translation from Timed Rebeca to Erlang, and a medium-sized case study where we model and simulate the BitTorrent [11]
protocol using Timed Rebeca and McErlang [9].

Comparison with other timed models Comparing with the well-established timed models, like timed automata [12], TCCS
[13], and real-time Maude [14], Timed Rebeca offers an actor-based syntax and a built-in actor-based computational model,
which restricts the style of modelling to an event-based concurrent object-based paradigm. Modelling time-related features
in computational models has been studied for a long time [15,12]; while we have no claims of improving the expressiveness
of timed models, we believe that our model is highly usable due to its actor-based nature and Java-like syntax. The usability
is due to the one to one correspondence between the entities of the real world and the objects in the model, and the events
and actions of the real world and the computational model. Moreover, the syntax of the language is familiar for software
engineers and practitioners.

Comparison with other timed actor models We know of a few other timed actor-based modelling languages [16–18] that we
will discuss in more detail in Section 6, where we discuss further related work. In [16] a central synchronizer acts like
a coordinator and enforces the real-time and synchronization constraints (called interaction constraints). A language for
the coordinated actors is briefly proposed in [17]; however, the main focus is having reusable real-time actors without
hardwired interaction constraints. The constraints declared within the central synchronizer in this line of work can be seen
as the required global properties of a Timed Rebeca model. We capture the architecture and configuration of a system via a
Timed Rebeca model and then we can check whether the global constraints are satisfied. The language primitives that we
use to extend Rebeca are consistent with the proposal in [17]. The primitives proposed in [18] are different from ours; that
paper introduced an await primitive whereas we keep the asynchronous nature of the model.

Analysis support In order to analyze Timed Rebeca models, we developed a tool to facilitate their simulation. In a parallel
project [19], a mapping from Timed Rebeca to timed automata is developed and UPPAAL [20] is used for model checking.
The asynchronous nature of Rebeca models causes state explosion while model checking even for small models. One solution
is using a modular approach like in [21]. Here, we selected an alternative solution as a complementary tool for analysis.
Using our tool we can translate a Timed Rebeca model to Erlang [22], set the parameters which represent the environment
and component variables, and run McErlang [9] to simulate the model. The tool allows us to change the settings of different
timing parameters and rerun the simulation in order to investigate different scenarios, find potential bugs and problems,
and optimize the model by manipulating the settings. The parameters can be timing constraints on the local computations
(e.g., deadlines for accomplishing a requested service), computation time for providing a service, and frequency of a periodic
event. Parameters can also represent network configurations and delays. In our experiments we could find timing problems
that caused missing a deadline, or an unstable state in the system.
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The formal semantics presented in this paper is the basis for the correct mapping from Timed Rebeca to Erlang. The tool
together with some examples can be found at [23].

Our choice to use the actor-based programming language Erlang is also based on the idea of covering the whole life cycle
of the system in the future, and of providing a refinement step for implementing the code from our Timed Rebeca model.

Overview of the paper In Section 2 we explain Timed Rebeca, the timing features that we have considered in designing the
language, and its formal semantics. In Section 3 we present the mapping from Timed Rebeca to Erlang, and in Section 4
we show our case studies and simulation results. Section 5 includes our medium-size example, the BitTorrent protocol. We
discuss the related work and specially timed actor-based models in Section 6. Finally, we conclude and sketch our future
work in Section 7.

2. Timed Rebeca

A Rebeca model consists of a set of reactive classes and the main program in which we declare reactive objects, or rebecs,
as instances of reactive classes. A reactive class has an argument of type integer, which denotes the length of its message
queue. The body of the reactive class includes the declaration for its known rebecs, variables, and methods (also called
message servers). Each method body consists of the declaration of local variables and a sequence of statements, which
can be assignments, if statements, rebec creation (using the keyword new), and method calls. Method calls are sending
asynchronous messages to other rebecs (or to self) to invoke the corresponding message server (method). Message passing
is fair, and messages addressed to a rebec are stored in its message queue. The computation takes place by taking the
message from the front of the message queue and executing the corresponding message server [1].

Timing features in an asynchronous and distributed setting To decide on the timing primitives to be added to the Rebeca syntax,
we first considered the different timing features that a modeller might need to address in a message-based, asynchronous
and distributed setting. These features (like the computation time, or periodic events) can be common in any setting.

1. Computation time: the time needed for a computation to take place.
2. Message delivery time: the time needed for a message to travel between two objects, which depends on the network

delay (and possibly other parameters).
3. Message expiration: the time within which a message is still valid. The message can be a request or a reply to a request

(that is, a request being served).
4. Periods of occurrences of events: the time periods for periodic events.

We introduce an extension of Rebeca with real-time primitives to be able to address the above-mentioned timing fea-
tures. In a Timed Rebeca model, each rebec has its own local clock, which can be considered as synchronized distributed
clocks.1 Methods are still executed non-preemptively, and we model passing of time while executing a method. Instead
of a message queue for each rebec, we have a bag containing the messages that are sent. The timing primitives that are
added to the syntax of Rebeca are delay, now, deadline and after. Fig. 1 shows the grammar for Timed Rebeca. The delay
statement models the passing of time for a rebec during execution of a method (computation time), and now returns the
local time of the rebec. The keywords after and deadline can only be used in conjunction with a method call. Each rebec
knows about its local time and can put deadline on the messages that are sent declaring that the message will not be valid
after the deadline (modelling the message expiration). The after primitive, attached to a message, can be used to declare
a constraint on the earliest time at which the message can be served (taken from the message bag by the receiver rebec).
The modeller may use these constraints for various purposes, such as modelling the network delay or modelling a periodic
event.

The messages that are sent are put in the message bag together with their time tag and deadline tag. The scheduler
decides which message is to be executed next based on the time tags of the messages. The time tag of a message is set to
the current local time of the sender rebec (value of the now of the sender rebec) when the message is sent. If the message
is augmented with an after then the value of the argument of the after will be added to the time tag. The intuition is that
a message cannot be taken (served) before the time that the time tag determines.

The progress of time is modelled locally by the delay statement. Each delay statement within a method body increases
the value of the local time (variable now) of the respective rebec by the amount of its argument. When we reach a call
statement (sending a message), we put that message in the message bag augmented with a time tag. The local time of a
rebec can also be increased when we take a message from the bag to execute the corresponding method.

The scheduler takes a message from the message bag, executes the corresponding message server non-preemptively, and
then takes another message. Every time the scheduler takes a message for execution, it chooses a message with the least
time tag. Before the execution of the corresponding method starts, the local time (now) of the receiver rebec has to be

1 In this paper we do not address the problem of distributed clock synchronization; several options and protocols for establishing clock synchronization
in a distributed system are discussed in the literature, including [24].
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Model ::= EnvVar∗ Class∗ Main
EnvVar ::= env T 〈v〉+;

Main ::= main { InstanceDcl∗ }
InstanceDcl ::= C r(〈r〉∗) : (〈c〉∗);

Class ::= reactiveclass C { KnownRebecs Vars MsgSrv∗ }
KnownRebecs ::= knownrebecs { VarDcl∗ }

Vars ::= statevars { VarDcl∗ }
VarDcl ::= T 〈v〉+;

MsgSrv ::= msgsrv M(〈T v〉∗) { Stmt∗ }
Stmt ::= v = e; | r = new C(〈e〉∗); | Call; | if (e) { Stmt∗ } [else { Stmt∗ }] |

delay(t); | now();
Call ::= r.M(〈e〉∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Timed Rebeca. Angle brackets 〈. . .〉 are used as meta parenthesis, superscript + for repetition at least once, superscript ∗ for
repetition zero or more times, whereas using 〈. . .〉 with repetition denotes a comma separated list. Brackets [. . .] indicates that the text within the brackets
is optional. Identifiers C , T , M , v , c, and r denote class, type, method, variable, constant, and rebec names, respectively; and e denotes an (arithmetic,
boolean or nondeterministic choice) expression.

adjusted. If the time tag of the received message is greater than the value of the current local time (now) of the receiver
then now will be increased to the time tag of the received message. The value of now of the rebec is frozen when the
method execution ends until the next method of the same rebec is taken for execution.

The arguments of after and delay are relative values, but when the corresponding messages are put in the message bag
their tags are absolute values, which are computed by adding the relative values of the arguments to the value of the
variable now of the sender rebec (where the messages are sent). To summarize, Timed Rebeca extends Rebeca with the
following four constructs.

• Delay: delay(t), where t is a positive natural number, will increase the value of the local clock of the respective rebec
by the amount t .

• Now: now() returns the time of the local clock of the rebec from which it is called.
• Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a method name of r and t is a natural number,

means that the message m is sent to the rebec r and is put in the message bag. After t units of time the message is no
longer valid and is purged from the bag. Deadlines are used to model message expirations (timeouts).

• After: r.m() after(t), where r denotes a rebec name, m denotes a method name of r and t is a natural number, means
that the message m is sent to the rebec r and is put in the message bag. The message cannot be taken from the bag
before t time units have passed. After statements can be used to model network delays in delivering a message to the
destination, and also periodic events.

Ticket service example We use a ticket service as a running example throughout the article. Listing 1 shows this example
written in Timed Rebeca. The ticket service model consists of two reactive classes: Agent and TicketService. Two rebecs, ts1
and ts2, are instantiated from the reactive class TicketService, and one rebec a is instantiated from the reactive class Agent.
The agent a is initialized by sending a message findTicket to itself in which a message requestTicket is sent to the ticket
service ts1 or ts2 based on the parameter passed to findTicket. The deadline for the message requestTicket to be served
is requestDeadline time units. Then, after checkIssuedPeriod time units the agent will check if it has received a reply to its
request by sending a checkTicket message to itself, modelling a periodic event. There is no receive statement in Rebeca,
and all the computation is modelled via asynchronous message passing, so, we need a periodic check for that purpose. The
attemptCount variable helps the agent to keep track of the ticket service rebec that the request is sent to. The token variable
allows the agent to keep track of which incoming ticketIssued message is a reply to a valid request. When any of the ticket
service rebecs receives the requestTicket message, it will issue the ticket after serviceTime1 or serviceTime2 time units, which
is modelled by sending ticketIssued to the agent with the token as parameter. The expression ?(serviceTime1, serviceTime2)

denotes a nondeterministic choice between serviceTime1 and serviceTime2 in the assignment statement. Depending on the
chosen value, the ticket service may or may not be on time for its reply.

Note that a set of environment variables are defined on the first line of the model. Timed Rebeca models can be made
parametric by defining a set of environment variables at the top of the model code file. The modeller can set values for
the variables when starting a simulation and inspect different behaviours of the model with regards to different time
parameters.

2.1. Structural operational semantics for Timed Rebeca

In this section we provide an SOS semantics for Timed Rebeca in the style of Plotkin [8]. The behaviour of Timed Rebeca
programs is given by the transition relation →, which describes the stepwise evolution of a system. The definition of the

relation → relies in turn on the transition relation
τ→, which expresses the effect of the atomic execution of methods.



A.H. Reynisson et al. / Science of Computer Programming 89 (2014) 41–68 45
1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2
3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5 statevars { int attemptCount; boolean ticketIssued; int token; }
6 msgsrv initial() { self.findTicket(ts1); } // initialize system, check 1st ticket service
7 msgsrv findTicket(TicketService ts) {
8 attemptCount += 1; token += 1;
9 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService

10 self.checkTicket() after(checkIssuedPeriod); // check if a reply to the request has been received
11 }
12 msgsrv ticketIssued(int tok) { if (token == tok) { ticketIssued = true; } }
13 msgsrv checkTicket() {
14 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,
15 self.findTicket(ts2); // try the second TicketService
16 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
17 self.retry() after(retryRequestPeriod); // restart from the first TicketService
18 } else if (ticketIssued) { // the second TicketService replied,
19 ticketIssued = false;
20 self.retry() after(newRequestPeriod); // new request by a customer
21 }
22 }
23 msgsrv retry() {
24 attemptCount = 0; self.findTicket(ts1); // restart from the first TicketService
25 }
26 }
27
28 reactiveclass TicketService {
29 knownrebecs { Agent a; }
30 msgsrv initial() { }
31 msgsrv requestTicket(int token) {
32 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply
33 delay(wait); // after a non-\xch{deterministic}{determinstic} delay of
34 a.ticketIssued(token); // either serviceTime1 or serviceTime2
35 }
36 }
37
38 main {
39 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs
40 TicketService ts1(a):(); // instantiate 1st and 2nd ticket services, with
41 TicketService ts2(a):(); // the agent as their known rebecs
42 }

Listing 1. A Timed Rebeca model of the ticket service example.

Form of the transition relations Steps in the transition relation → take the form

(Env, B) → (
Env′, B ′).

The states of the system are pairs of the form (Env, B), where Env is a finite set of environments and B is a bag of messages.
For each rebec A of the program there is an environment σA contained in Env, that is a function that maps variables to their
values. The environment σA represents the private store of the rebec A. Besides the user-defined variables, environments
also contain the value for the special variables self, the name of the rebec, now, the current time, and sender, which keeps
track of the rebec that invoked the method that is currently being executed. The environment σA also maps every method
name of A to its body.

The bag B contains an unordered collection of messages. Each message is a tuple of the form (Ai,m(v), A j,TT,DL).
Intuitively, such a tuple says that at time TT the sender A j sent the message to the rebec Ai asking it to execute its method
m with actual parameters v . Moreover this message expires at time DL.

The general form of the steps in the transition relation
τ→ is

(S,σ ,Env, B)
τ→ (

σ ′,Env′, B ′).

A single step of
τ→ consumes all the body S of the executed method and provides the value resulting from its execution

starting from its environment σ in the context of the system state (Env, B). As the rules defining
τ→ will make clear, having

the bag B as a component of configurations is important because new messages may be added to it during the execution
of a statement S . Also Env is required because new statements create new rebecs and may therefore add new environments
to it. In the notion of configuration used above, the local environment σ is separated from the environment list Env for the
sake of clarity. The result of the execution of the method thus amounts to the modified private store σ ′ , the new list of
environments Env′ and the new bag B ′ .
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(msg) (varname.m(v) after(d) deadline(DL),σ ,Env, B)
τ→ (σ ,Env, {(σ (varname),m(eval(v, σ )),σ (self ),σ (now) + d, σ (now) + DL)} ∪ B)

(delay) (delay(d),σ ,Env, B)
τ→ (σ [now = σ(now) + d],Env, B)

(assign) (x = e, σ ,Env, B)
τ→ (σ [x = eval(e, σ )],Env, B)

(create) (varname = new O (v),σ ,Env, B)
τ→ (σ [varname = A], {σA [now = σ(now), self = A]} ∪ Env, {(A, initial(eval(v, σ )),σ (self )),σ (now),+∞)} ∪ B)

(cond1)
eval(e, σ ) = true (S1, σ ,Env, B)

τ→ (σ ′,Env′, B ′)
(if (e) then S1 else S2, σ ,Env, B)

τ→ (σ ′,Env′, B ′)

(cond2)
eval(e, σ ) = false (S2, σ ,Env, B)

τ→ (σ ′,Env′, B ′)
(if (e) then S1 else S2, σ ,Env, B)

τ→ (σ ′,Env′, B ′)

(seq)
(S1, σ ,Env, B)

τ→ (σ ′,Env′, B ′), (S2, σ ′,Env′, B ′) τ→ (σ ′′,Env′′, B ′′)
(S1; S2, σ ,Env, B)

τ→ (σ ′′,Env′′, B ′′)

Fig. 2. The method-execution transitions rules. In rule create, the rebec name A should be fresh, that is, it should not appear in Env. The function eval
evaluates expressions in a given environment in the expected way. In each rule, we assume that σ is not contained in Env.

Definition of → The system transition relation → is defined by the rule scheduler:

(scheduler)
(σAi (m),σAi [now = max(TT, σAi (now)), [arg = v], sender = A j ], Env, B)

τ→ (σ ′
Ai

, Env′, B ′)

({σAi } ∪ Env, {(Ai ,m(v), A j ,TT,DL)} ∪ B) → ({σ ′
Ai

} ∪ Env′, B ′)
C

where the condition C is defined as follows: σAi is not contained in Env, and (Ai,m(v), A j,TT,DL) /∈ B , and σAi (now) � DL,
and TT � min(B). The scheduler rule allows the system to progress by picking up messages from the bag and executing the
corresponding methods. The third side condition of the rule, namely σAi (now) � DL, checks whether the selected message
carries an expired deadline, in which case the condition is not satisfied and the message cannot be picked. The last side
condition is the predicate TT � min(B), which shows that the time tag TT of the selected message is the smallest time tag
of all the messages (for all the rebecs Ai ) in the bag B . The premise executes the method m, as described by the transition

relation
τ→, which will be defined below. The method body is looked up in the environment of Ai and is executed in the

environment of Ai modified as follows:

1. The variable sender is set to the sender of the message.
2. In executing the method m, the formal parameters arg are set to the values of the actual parameters v . Methods of

arity n are supposed to have arg1,arg2, . . . ,argn as formal parameters. This is without loss of generality since such a
change of variable names can be performed in a pre-processing step for any program.

3. The variable now is set to the maximum between the current time of the rebec and the time tag of the selected
message.

The execution of the methods of rebec Ai may change the private store of the rebec Ai , the bag B by adding messages to
it and the list of environments by creating new rebecs through new statements. Once a method is executed to completion,
the resulting bag and list of environments are used to continue the progress of the whole system.

Definition of
τ→ The transition relation

τ→ describes the execution of methods in the style of natural semantics [25]. Since
in this kind of semantics the whole computation of a method is performed in a single step, this choice perfectly reflects the
atomic execution of methods underlying the semantics of the Rebeca language.

Fig. 2 shows the SOS rules defining
τ→. The rules for assignment, conditional statement and sequential composition are

standard. The rules for the timing primitives deserve some explanation.

• Rule msg describes the effect of method invocation statements. For the sake of brevity, we limit ourselves to presenting
the rule for method invocation statements that involve both the after and deadline keywords. The semantics of instances
of that statement without those keywords can be handled as special cases of that rule by setting the argument of after
to zero and that of deadline to +∞, meaning that the message never expires. Method invocation statements put a new
message in the bag, taking care of properly setting its fields. In particular the time tag for the message is the current
local time, which is the value of the variable now, plus the number d that is the parameter of the after keyword.
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1 receive
2 Pattern1 when Guard1 -> Expr1;
3 Pattern2 when Guard2 -> Expr2;
4 ...
5 after
6 Time -> Expr
7 end

Listing 2. Syntax of a receive with timeout.

Moreover, eval(v, σ ) indicates the tuple of actual parameters that results by evaluating the tuple of expressions v in
the environment σ .

• Delay statements change the private variable now for the considered rebec.

Finally, the creation of new rebecs is handled by the rule create. A fresh name A is used to identify the newly created
rebec and is assigned to varname. A new environment σA is added to the list of environments. At creation time, σA is set
to have its method names associated to their code (we omit the rules that accomplish this). A message is put in the bag
in order to execute the initial method of the newly created rebec. This message can be executed immediately and never
expires.

3. Mapping from Timed Rebeca to Erlang

In this section, we present a translation from the fragment of Timed Rebeca without rebec creation to Erlang [22]. The
motivation for translating Timed Rebeca models to Erlang code is to be able to use McErlang [9] to run experiments on the
models. This translation also yields a first implementation of Timed Rebeca.

McErlang is a model-checking tool written in Erlang to verify distributed programs written in Erlang. It supports Erlang
datatypes, process communication, fault detection and fault tolerance and the Open Telecom Platform (OTP) library, which
is used by most Erlang programs. The verification methods range from complete state-based exploration to simulation,
with specifications written as LTL formulae or hand-coded runtime monitors. This paper focuses on simulation since model
checking with real-time semantics is not yet offered by McErlang. Note, however, that our translation opens the possibility
of model checking (untimed) Rebeca models using McErlang, which is not the subject of this paper.

In what follows, we recapitulate briefly on the Erlang programming language and we describe the translation. We reserve
Section 3.2 for a formal account of the encoding. The reader can find an implementation of it at [23].

Erlang primer Erlang is a dynamically-typed general-purpose programming language, which was designed for the im-
plementation of distributed, real-time and fault-tolerant applications. Originally, Erlang was mostly used for telephony
applications such as switches. Its concurrency model is based on the actor model.

Erlang has few concurrency and timing primitives:

• Pid = spawn(Fun) creates a new process that evaluates the given function Fun in parallel with the process that invoked
spawn.

• Pid ! Msg sends the given message Msg to the process with the identifier Pid.
• receive ... end receives a message that has been sent to a process; message discrimination is based on pattern match-

ing.
• after is used in conjunction with a receive and is followed by a timeout block as shown in Listing 2, after the specified

time (deadline for receiving the required pattern) the process executes the timeout block.
• erlang:now() returns the current time of the process.

When a process reaches a receive expression it looks in the queue and takes a message that matches the pattern if the
corresponding guard is true. A guard is a boolean expression, which can include the variables of the same process. The
process looks in the queue each time a message arrives until the timeout occurs.

Mapping The abstract syntax for a fragment of Erlang that is required to present the translation is shown in Fig. 3. Table 1
offers an overview of how a construct in one language relates to one in the other. We discuss the general principles behind
our translation in more detail below.

Reactive classes are translated into three functions, each representing a possible behaviour of an Erlang process:

1. the process waits to get references to known rebecs,
2. the process reads the initial message from the queue and executes it,
3. the process reads messages from the queue and executes them.
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Program ::= Function∗ Function ::= v(Pattern∗) → e
Expr ::= e1 ope e2 | e(〈e〉∗) | e1 ! e2 | e1 , e2 | Pattern = e | case e of Match end

|receive Match end| receive Match after Time → e end
|if 〈Match〉∗end
|BasicValue | v | {〈e〉∗} | [〈e〉∗]

Match ::= Pattern when Guard → e
Pattern ::= v | BasicValue | {〈Pattern〉∗} | [〈Pattern〉∗]

Time ::= int
Value ::= BasicValue | {〈Value〉∗} | [〈Value〉∗]

BasicValue ::= atom | number | pid | fid
Guard ::= g1 opg g2 | BasicValue | v | g(〈g〉∗) | {〈g〉∗} | [〈g〉∗]

Fig. 3. Abstract syntax of a relevant subset of Erlang. Angle brackets 〈. . .〉 are used as meta parenthesis, superscript + for repetition more than once,
superscript ∗ for repetition zero or more times, whereas using 〈. . .〉 with repetition denotes a comma separated list. Identifiers v , p and g denote variable
names, patterns and guards, respectively, and e denotes an expression. Note that { } and [ ] are parts of the syntax of Erlang representing tuples and lists,
respectively.

Table 1
Structure of the mapping from Timed Rebeca to Erlang.

Timed Rebeca Erlang

Model → A set of processes
Reactive classes → A process whose behaviour consists of three functions

Known rebecs → Record of variables
State variables → Record of variables

Message server → A match in a receive expression
Local variables → Record of variables
Message send → Message send expression

Message send w/after → Message send expression in the timeout block of a receive
with an empty pattern, the timeout block is always
executed, sending the message after the specified time

Message send w/deadline → Message send expression with the deadline as parameter
Delay statement → Empty receive with a timeout
Now expression → System time

Assignment → Record update
If statement → If expression

Nondeterministic selection → Random selection in Erlang

Once processes reach the last function they enter a loop. Erlang pseudocode for the reactive class TicketService in the Rebeca
model in Listing 1 is shown in Listing 3.

A message server is translated into a match expression (see Fig. 3), which is used inside receive ... end. In Listing 3,
requestTicket is the pattern that is matched on, and the body of the message server is mapped to the corresponding
expression.

Message send is implemented depending on whether after is used. If there is no after, the message is sent like a
regular message using the ! operator, as shown on line 4 in Listing 4. However, if the keyword after is present a new
process is spawned which sleeps for the specified amount of time before sending the message as described before. Setting a
deadline for the delivery of a message is possible by changing the value inf, which denotes no deadline (as shown on line 3
in Listing 4), to an absolute point in time. Messages are tagged with the time at which they were sent. For the simulation
we use the system clock to find the current time by calling the Erlang function now().

Moreover, since message servers can reply to the sender of the message, we need to take care of setting the sender as
part of the message, as seen on line 4 in Listing 4.

As there is no pattern to match with, the delay statement is implemented as a receive consisting of just a timeout that
makes the process wait for a certain amount of time. For example, delay(10) is translated to receive after 10 -> ok end.

The deadline of each message is checked right before the body of the message server is executed. The current time is
compared with the deadline of the message to see if the deadline has expired and, if so, the message is purged.

3.1. The mapping, formally

In Fig. 4, we provide the abstract syntax on which our encoding is based. The encoding takes the form of a syntax-
directed translation from Timed Rebeca to Erlang. The abstract syntax that we give in Fig. 4 rephrases the one defined in
Fig. 1 of Section 2 in order to better support a recursive translation of the language.2

2 The abstract syntax in Fig. 1 makes use of features of Extended BNF grammars such as the superscript ∗ to indicate the repetition of zero or more
times of a syntactic entity. Although this allows for a compact presentation of the language, that formulation is less suited for a syntax-directed translation.
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1 ticketService() ->
2 receive
3 % wait for a message with a set of known rebecs
4 {Agent} ->
5 % proceed to the next behaviour
6 ticketService(#ticketService_knownrebecs{agent=Agent})
7 end.
8 ticketService(KnownRebecs) ->
9 receive

10 % wait for the ’initial’ message
11 initial ->
12 % process message ’initial’ and proceed to the next behaviour
13 ticketService(KnownRebecs, #ticketService_statevars{})
14 end.
15 ticketService(KnownRebecs, StateVars) ->
16 receive
17 % wait for each message server
18 requestTicket ->
19 % process message ’requestTicket’ and loop
20 ticketService(KnownRebecs, StateVars)
21 end.

Listing 3. Pseudo Erlang code capturing the behaviour of the ticketService process.

1 Sender = self(),
2 spawn(fun() ->
3 receive after 15 ->
4 TicketService ! {{Sender, now(), inf}, requestTicket}
5 end
6 end)

Listing 4. Example of a message send after 15 time units in Erlang.

Model ::= r1 . . . ri m
Main ::= main{d1 . . .di}

InstanceDcl ::= tr vr (t1 v1 . . . ti vi):(k1 . . .k j)
Class ::= reactiveclass n {k s in m1 m2 . . .mi}

KnownRebecs ::= knownrebecs {t1 v1 . . . ti vi}
Vars ::= statevars {t1 v1 . . . ti vi}

MsgSrv ::= msgsrv initial(t1 v1 . . . ti vi) {s1 . . . s j} |
msgsrvm(t1 v1 . . . ti vi) {s1 . . . s j}

Stmt ::= v = e; | r.m(e1 . . . ei); |
delay(e); | r.m(e1 . . . ei) after(ea) deadline(ed);

Fig. 4. Unfolded version of the abstract syntax in Fig. 1. The non-terminals on the right-hand side are replaced with variables to make the explanation of
the mapping easier.

Moreover, only relevant syntactic categories are taken into account in this section; for instance, the encoding of if state-
ments and of many expressions are not shown since their implementation is trivial or subsumed by the encoding of other
constructs. The meaning of the meta-variables that occur in the unfolded abstract syntax in Fig. 4 is made clear later when
a description of the various mappings involved in the translation is given.

We provide the encoding by means of a number of mappings, one for each syntactic category of Timed Rebeca. Some
of the encodings are parameterized by the information contained in a structure we call conf . A structure conf is associated
with each rebec and contains three fields: knownrebecs, statevar and localvars. Intuitively, the field knownrebecs contains the
set of known rebecs, and statevar and localvars contains the set of variable names for both state and local variables. In our
encodings we use the standard dot notation in order to access the structure conf , e.g. conf .statevar is used to access the
field statevar of the structure conf . Together with showing the formal encoding, a brief description of the mappings involved
in the encoding is given.

MO�r1 . . . ri m�: Encoding for Model. Here r1 . . . ri are rebecs and m is the code in main. This function initializes the struc-
ture conf for each rebec as a preprocessing step and encodes each rebec passing this structure as parameter. Then,
it encodes the code in main. Fig. 5 presents the encoding of models. The reader should bear in mind that the
mapping MO calculates the structure conf i for each rebec ri in a preprocessing step.



50 A.H. Reynisson et al. / Science of Computer Programming 89 (2014) 41–68
MO�r1 . . . ri m� = R�r1 � conf 1

.

.

.

R�ri � conf i
M�m�

Fig. 5. Encoding of models.

R�reactiveclass n {k s in m1 m2 . . .mi}� conf =
n () ->
receive
{B�k� conf} ->

n (#conf .knownrebecs{B�k� conf})
end.

n (KnownRebecs) ->
StateVars=#conf .statevars{},
LocalVars=#conf .localvars{},
{NewStateVars, _}= receive
B�in� conf

end.
n(KnownRebecs,NewStateVars)

n (KnownRebecs,StateVars) ->
LocalVars=#conf .localvars{},
{NewStateVars, _}= receive
B�m1 � conf
.
.
.

B�mi � conf
end.
n(KnownRebecs,NewStateVars)

Fig. 6. Encoding of rebecs.

R�reactiveclass n {k s in m1 m2 . . .mi}�: Encoding for Class. Here n is the name of the reactive class, k is a sequence
of knownrebecs, s is a sequence of state variables, in is the initial method and m1 . . .mi are methods. This function
encodes the reactive class in three Erlang functions with same name. These functions accept different formal
parameters and they have different signatures, i.e. they are considered as different functions by Erlang.
1. The first Erlang function accepts the known rebecs and calls the second function.
2. The second function accepts the initial message and, once arrived, it runs the corresponding code obtained by

the mapping B. The mapping B returns a new set of state variables; indeed variables might have been changed
during the execution of an inital method. Since structures are immutable in Erlang, they cannot be modified
directly in our encoding. To overcome this difficulty we follow a standard solution. We create a new structure
and return it as value. After the execution of the code for initial, this function calls the third function, passing
to it this new set of state variables as well as the set of known rebecs.

3. The third function waits for incoming messages, which correspond to method calls. Once a message has arrived,
the function runs the corresponding code obtained again with the mapping B. After this, it is ready to accept
again messages by function calling itself, but with the modified set of state variables. Indeed variables might
have been changed during the execution of a method.
The reader can find the encoding of rebecs in Fig. 6.

B�msgsrv m(t1 v1 . . . ti vi){s1 . . . s j}�: Encoding for MsgSrv. Here m is the name of the method, t1 . . . ti are type names,
v1 . . . vi are identifiers, and s1 . . . s j are the statements of the body of the method. This function makes use of
pattern matching in order to wait for a message of the form

{Sender,TT,DL,m, w1 . . . wi}.
These messages are basically the messages that are exchanged within the actual Timed Rebeca. When such a
message has arrived, we check if the deadline of the message has not expired. If the message has not expired, we
execute the statements of the method, otherwise a null action is executed. A few peculiarities of this encoding
deserve some explanation.
• Performing a null action corresponds to what in Timed Rebeca is the discarding of the message. Indeed, in the

Erlang system, the message has been delivered and it will be not processed again.
• The execution of statements is quite involved. Indeed, structures are immutable in Erlang, but in Timed Rebeca

the execution of some statements might change variable values. This means that subsequent statements should
be executed knowing the new values for variables. Our solution is to execute every statement as a function that
receives the set of variables as argument, and returns a new set of variable. The auxiliary function AP takes care
of correctly composing these functions.
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B�msgsrv m(t1 v1 . . . ti vi){s1 . . . s j}� conf =
{{Sender, TT, DL, m, w1 . . . wi} ->
TimeNow = tr_now(),
if
(DL == ok orelse TimeNow < DL)) ->
{NewStateVars, _} = AP(S�s1 � conf . . .S�s j � conf ),
n (KnownRebecs,NewStateVars);

true ->
% dropping message

end

Fig. 7. Encoding of message servers.

S�v=e;� conf = fun(StateVars, LocalVars) ->
v ∈ conf .statevars −→
{StateVars conf .statevars2 = E�e�conf, LocalVars}

v ∈ conf .localvars −→
{StateVars, LocalVars conf .localvars2 = E�e�conf}

otherwise −→ error
end

S�r.m(e1 . . . ei);� conf = fun(StateVars, LocalVars) ->
tr_send(I�r�,I�m�,{E�e1 � . . .E�ei �}),

{StateVars, LocalVars}
end

S�r.m(e1 . . . ei) after(a) deadline(d);� conf =
fun(StateVars, LocalVars) ->
tr_sendafter(E�ea �,I�r�,I�m�,{E�e1 �conf . . .E�ei �conf},

E�ed �),{StateVars, LocalVars}
end

S�delay(e);� conf = fun(StateVars, LocalVars) ->
tr_delay(E�e�conf),

{StateVars, LocalVars}
end

Fig. 8. Encoding of some selected statements.

• In order to encode a Timed Rebeca after construct, we rely on the Erlang after construct, which would actually
send the message only at the right time. The Erlang system takes care of this aspect for us.

• The function tr_now() recovers the current time from the Erlang primitive erlang_now().
We present the encoding of message servers in Fig. 7.

S : Encoding of Stmt. This function encodes statements from Timed Rebeca into anonymous functions in Erlang. Functions
receive as input the set of values and return a new set of values. The two relevant cases to discuss are the method
invocation when it involves after and deadline constructs, and the delay statement. In what follows we consider
in detail only these two cases.
• S�r.m(e1 . . . ei) after(a) deadline(d);�: This function creates a new process using the Erlang primitive

spawn. This new process makes use of a receive statement with an empty body and of the Erlang after to send
the message. As said previously, the Erlang system takes care of the timing aspect for us and the message will
be sent only at the proper time. Thanks to the spawn primitive the sender process does not stop its execution
by the effect of an after statement, the new process will wait instead. The reader should also notice that the
message sent by this new process contains the father process as sender, not itself.

• S�delay(e);�: This function simply performs a receive statement with an empty body and an after call in
order to let the specified amount of time pass. A null action is performed afterwards.
In Fig. 8 we show the encoding of some selected statements.

Other mappings. The mappings I and T translate the names of identifiers and types from Timed Rebeca to Erlang. The
mapping E encodes expressions and it is implemented as expected. The mapping K translates constants from
Timed Rebeca to Erlang, while the mapping M encodes the main code using PC and L in order to encode
instance declarations. Fig. 9 shows some of these mappings, namely it presents the encoding of the main functions
and instance declarations.

Moreover, to be able to simulate programs with McErlang, the translated Erlang code is instrumented with calls to
the probe_state McErlang function at the end of each message server. That way McErlang is notified of state changes for
each execution of a message server and its runtime monitors can abort the simulation if it has run into an assertion
violation.
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M�main{d1 . . .di}� = main() ->
PC�d1 �,

.

.

.

PC�di �,

L�d1 �,

.

.

.

L�di �.

PC�tr vr (t1 v1 . . . ti vi):(k1 . . .k j)� = I�vr � = spawn(fun() -> I�tr �() end)

L�tr vr (t1 v1 . . . ti vi):(k1 . . .k j)� =
I�vr � ! {v1 . . . vi} end),
tr_send(I�vr �, initial, {K�k1 � . . .K�ki �})

Fig. 9. Encoding of the main function and instance declarations.

The reader should bear in mind that for the sake of the presentation we do not show the whole encoding. However, an
implementation of it in Erlang can be found in [23].

3.2. Mapping to Erlang based on the formal semantics of Timed Rebeca

The mapping to Erlang is based on the formal semantics of Rebeca, presented in Section 2.1. The execution of the next
transition is scheduled based on the scheduler rule in Section 2.1, and each statement in the model is executed based
on the method execution transitions rules given in Fig. 2. Fig. 5 shows how the configuration of reactive classes and the
main code is built by initializing the processes and building their configurations. Fig. 6 shows more details of building the
configuration.

Based on the formal semantics given in Section 2.1, the environment Env is the set of local environments of all rebecs,
σAi . A local environment σAi includes self (the name of the rebec), sender (the rebec that invoked the method that is
currently being executed), now (the current time), and the private store of the rebec Ai . The variable self is kept by the
Erlang runtime environment. The sender is passed explicitly in each message. Variable now is simply the system time
returned by function tr_now() of Erlang. The StateVars shown in Fig. 6 builds the private store of the local environment. The
bag of messages of Timed Rebeca is mapped to the set of message queues of all processes in Erlang. Fig. 6 also shows the
main execution loop of each rebec in the Erlang program, where the rebec takes a message from its message queue and
executes it.

The encoding of the message server, B�msgsrv m(t1 v1 . . . ti vi){s1 . . . s j}� in Fig. 7, is based on the scheduler rule.
Here, the third side condition of the scheduler rule, σAi (now)� DL, is checked and the message is discarded if the deadline
has passed. The last side condition, TT � min(B), is implicit in the execution of an Erlang program. The first two side
conditions are irrelevant for the Erlang encoding.

The encoding of each statement is also based on the rules in Fig. 2. Sending of a message, S�r.m(e1 . . . ei) after(a)
deadline(d);� in Fig. 8, is based on the msg rule in Fig. 2.

As mentioned before, the bag of messages of a Timed Rebeca model is mapped to the set of message queues of all pro-
cesses in Erlang. In Fig. 8 we show how the messages are sent using tr_send and tr_sendafter. Both tr_send and tr_sendafter
are simply mapped to sending a message in Erlang (as actor!msg) and the information regarding the deadline and the sender
of the message is included in the message.

As explained in the previous subsection, a new process in Erlang is spawned in order to implement the delay caused by
the after construct in a send statement. The delay statement, S�delay(e);� in Fig. 8, is based on the delay rule in Fig. 2
and is encoded using the tr_delay statement of Erlang. The rest of the statements are just standard and the encoding is
straightforward.

4. Simulation of Timed Rebeca models using McErlang

In this section, we investigate three case studies. The first case study is a simple communication protocol in which the
basic ideas underlying the modelling are presented. The second one is the ticket service model displayed in Listing 1 and
the third one is a model of a sensor network. In the two last case studies, we run a simulation for ten times and for
each case for 30 minutes. In the case that a runtime monitor fails we stop the simulation. When a runtime monitor fails
it means that an erroneous state has been reached. The simulations are run in a setting in which a time unit is 1000 ms.
The experimental platform is Macbook 2.0 GHz Intel Core 2 Duo – Aluminum 4 GB memory, Mac OS X, 10.6.6, and Erlang
R13B04.

Runtime monitors One of the reasons for using McErlang is to be able to write code that monitors the state of the simulation
and either let the simulation continue running or stop the simulation due to an erroneous state or unexpected behaviour in
the program. Essentially, McErlang monitors give rise to the ability to write assertions over states. An assertion is typically a
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Fig. 10. Example of an event graph.

Fig. 11. Event graph of the simple communication protocol model.

check on the value of a variable, and the simulation stops and reports any violation. For example, in one of our case studies
an assertion checks for the health status of a scientist. If the assertion becomes false, we can stop the simulation and report
a failure of the system.

Event graph Before presenting the case studies, we need to explain event graphs in which a highly abstracted view of
scheduling events can be depicted. Event graphs have a single type of node and two types of edges. The nodes represent
events in a system. Edges correspond to the scheduling of other events [26]. Jagged incoming edges denote an initial event.
Edges can optionally be associated with a boolean condition for scheduling an event and/or a time delay which means that
an event will be scheduled after the delay. Fig. 10 shows an example of an event graph where event B is scheduled by A
after t a delay of t time units and if condition (i) is true.

Event graphs are widely used in simulation and analysis of complex systems within the engineering community. More
specifically, they are used to represent graphically discrete-event simulation models. We use event graphs in this paper
only to give a highly abstracted view of how events are scheduled in our case studies. An event is defined as receiving a
message. We adopt an alternative notation where conditional edges are thicker, even if the conditions are not specified [27].
Additionally, we add a label below each node that shows in which reactive class the event occurs. We decided to draw the
event graphs based on reactive classes, and not on rebecs, to have a simpler view of the dependencies among events in the
system.

Communication protocol The simple communication protocol is an example from [28] that consists of a sender agent and a
receiver agent. The sender agent sends a message to the receiver and waits for an acknowledgement. If an acknowledgement
is not received within 8 time units the sender resends the message. The receiver agent receives the message and replies
with an acknowledgement. A successful outcome is that the sender agent receives an ack message before 8 time units have
passed. Communications from the sender agent to the receiver agent takes 3 ± 1 time units and may fail, while a message
from the receiver agent to the sender agent takes 2 ± 1 time units and may also fail. This is a simple model where the
execution terminates after the sender agent receives the acknowledgement.

Fig. 11 shows the event graph of the simple protocol. The graph shows how the system is initialized from the sender
agent. Moreover, there is a loop in the graph (start → check ack → start) which tells us that if we select certain time
constraints in the model, the model might result in an imbalance situation and an infinite computation. Listing 5 shows the
Timed Rebeca code for the model.

Repeated simulations of the model show us that the model behaves as expected. They reveal that the system sometimes
drops messages due to the nondeterministic choice of the network delay and this will execute the loop (start → check ack
→ start). The loop was not repeated indefinitely, which is not surprising since nondeterministic choices are implemented
as random selections in the Erlang mapping.

Ticket service The ticket service model is described in Section 2. Fig. 12 shows the event graph of the ticket service model.
The graph shows how the system is initialized in the Agent class by scheduling a find ticket event. The find ticket event
will always schedule two simultaneous events, request ticket and check ticket. Request ticket event will schedule a ticket
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1 reactiveclass SenderAgent(3) {
2 knownrebecs { ReceiverAgent receiverAgent; }
3
4 statevars { boolean receivedAck; }
5
6 msgsrv initial() { self.start(); }
7
8 msgsrv start() {
9 time sendDelay = ?(-1,2,3,4); // -1=fail -- 2,3,4=delays

10 if (sendDelay != -1) {
11 receiverAgent.send() after(sendDelay);
12 }
13 self.checkAck() after(8);
14 }
15
16 msgsrv ack() { receivedAck = true; }
17
18 msgsrv checkAck() {
19 if (!receivedAck) self.start();
20 }
21 }
22
23 reactiveclass ReceiverAgent(3) {
24 knownrebecs { SenderAgent senderAgent; }
25
26 statevars {}
27
28 msgsrv initial() {}
29
30 msgsrv send() {
31 time sendDelay = ?(-1,1,2,3); // -1=fail -- 1,2,3=delays
32 if (sendDelay != -1) {
33 senderAgent.ack() after(sendDelay);
34 }
35 }
36 }
37
38 main {
39 ReceiverAgent receiverAgent(senderAgent):();
40 SenderAgent senderAgent(receiverAgent):();
41 }

Listing 5. A Timed Rebeca model of the simple communication protocol example.

Table 2
Experimental simulation results for ticket service.

Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Result

2 1 1 1 3, 4 7 Not issued
2 2 1 1 4 7 Not issued
2 2 1 1 3 7 Ticket issued

issued event after a delay. However, there is a network delay on the scheduling of check ticket, which means that it may be
scheduled later than the ticket issued event. In that case, either a find ticket event or retry event may be scheduled. Notice
that the model is reactive, and will continue to schedule the find ticket event to start the cycle all over again.

For each simulation, we change one of the following parameters: the amount of time that is allowed to pass before
a request is processed, the time that passes before agent checks if he has been issued a ticket, the amount of time that
passes before agent tries the next ticket service if he did not receive a ticket, the amount of time that passes before
agent restarts the ticket requests in case neither ticket service issued a ticket and two different service times, which are
non-deterministically chosen as delay time in a ticket service and model the processing time for a request. Table 2 shows
different settings of those parameters for which the ticket services never issue a ticket to the agent because of tight dead-
lines, as well as settings for which a ticket is issued during a simulation of the model.

Sensor network We model a simple sensor network using Timed Rebeca. (See Listing 6 in Appendix A for the complete
description of the model.) A distributed sensor network is set up to monitor levels of toxic gasses. The sensor rebecs
(sensor0 and sensor1), announce the measured value to the admin node (admin rebec) in the network. If the admin
node receives reports of dangerous gas levels, it immediately notifies the scientist (scientist rebec) on the scene about
it. If the scientist does not acknowledge the notification within a given time frame, the admin node sends a request to the
rescue team (rescue rebec) to look for the scientist. The rescue team has a limited amount of time units to reach the
scientist and save him.
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Fig. 12. Event graph of the ticket service model.

Fig. 13. Event graph of the sensor network model. Notice there are two events that start the system.

Fig. 13 shows the event graph of the sensor network model. The graph shows how the system is initialized in the
Sensor and Admin classes. The sensor class schedules do report events and continues to do so throughout the life cycle of
the system. The admin class schedules an event that checks the sensor values repeatedly. These events make the model
reactive. The check sensors event may set off a routine that checks if a scientist has acknowledged the presence of dangerous
gas levels. Additionally, it may schedule the scientist to abort whatever is being performed. If the scientist is instructed to
abort, he will send an acknowledgement. However, the ack event may be scheduled after the check ack event. In that case,
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Table 3
Experimental simulation results for sensor network.

Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline

Result

1 4 2 3 2 3 Mission failed
1 4 2 3 2 4 Mission success
2 1 1 1 4 5, 6, 7 Mission failed
2 4 1 1 4 7 Mission success

go is scheduled, which will schedule a rescue reach event. Alas, the rescue reach event may be scheduled after check rescue,
in which case the scientist would be dead.

The rebecs sensor0 and sensor1 will periodically read the gas-level measurement, modelled as a non-deterministic
selection between GAS_LOW and GAS_HIGH, and send their values to admin. The admin continually checks, and acts
upon, the sensor values it has received. When the admin node receives a report of a reading that is life threatening for
the scientist (GAS_HIGH), it notifies him and waits for a limited amount of time units for an acknowledgement. The
rescue rebec represents a rescue team that is sent off, should the scientist not acknowledge the message from the
admin in time. We model the response speed of the rescue team with a non-deterministic delay of 0 or 1 time units. The
admin keeps track of the deadlines for the scientist and the rescue team as follows:

• the scientist must acknowledge that he is aware of a dangerous gas-level reading before scientistDeadline time units
have passed;

• the rescue team must have reached the scientist within rescueDeadline time units.

Otherwise we consider the mission failed.
The model can be parameterized over the values of network delay, admin sensor-read period, sensor0 read period,

sensor1 read period, scientist reply deadline and rescue-team reply deadline, as shown in Table 3. In that table, we can
see two different cases in which we go from mission failure to mission success between simulations. In the first scenario,
we go from mission failure to success as we increase the rescue deadline, as expected. In the second scenario, we changed
the parameters to model a faster sensor update and we observed mission failure. In this scenario, increasing the rescue
deadline further (from 5 to 7) is insufficient. Upon closer inspection, we observe that our model fails to cope with the rapid
sensor updates and admin responses because it enters an unstable state. The admin node initiates a new rescue mission
while another is still ongoing, eventually resulting in mission failure. This reflects a design flaw in the model for frequent
updates that can be solved by keeping track of an ongoing rescue mission in the model. Alternatively, increasing the value
of admin sensor-read period above half the rescue deadline eliminates the flaw and the simulation is successful again.

5. Implementing a simplified BitTorrent protocol in Timed Rebeca

In this section, we first give a brief explanation of the BitTorrent protocol, and then we describe implementing a simpli-
fied BitTorrent protocol in Timed Rebeca. Finally, we show the effect of different aspects of the protocol such as file size,
network size, network delay, and download to upload ratio on download time by running the model for different scenarios.

BitTorrent protocol BitTorrent (BT) is a P2P application that aims at enabling fast and efficient distribution and downloading
of large files by using the upload bandwidth of the downloading peers [11,29]. In BitTorrent, a file is divided into many
equal sized shares (typically 256 KB) for download, each share is called chunk. While downloading the pieces of file, each
peer uploads the pieces that it has already acquired to other peers. In a BT network we can distinguish between two classes
of nodes: seeds and leechers. Seeds are peers who have a complete copy of the resource, whereas leechers are nodes who
are currently downloading.

The only centralized component of BT is an entity called tracker. The tracker is responsible for helping peers find each
other and for keeping the download/upload statistics of each peer. In order to download a file, peers download a .torrent
file from a web server to access the tracker and join the system. A peer contacts the tracker to obtain a list containing a
random subset of the peers currently in the system (both seeds and leechers). This peer will establish connection directly to
peers in the peer set, which become its neighbours. Each peer looks for opportunities to download pieces from, and upload
pieces to, its neighbours in its peer set.

BT employs a tit-for-tat rate-based download strategy, which encourages cooperation among peers and guards against
free-riding, i.e. consuming resources without contributing to the system. Under this strategy, a peer must upload as well
as download at the same time when interacting with another peer. Each peer preferentially uploads to peers from which
it has the highest downloading rates. Another vital mechanism employed in BT is the piece selection mechanism. Peers in
BitTorrent use a local rarest first (LRF) technique to select which share to request. Peers always select to download the rarest
pieces within their peer set. It tries to download the pieces that is least replicated among its neighbours. Actually, the LRF
strategy is combined with a random choice in the practical deployment.
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Fig. 14. Event graph of connecting a peer to the tracker.

Table 4
State variables of each peer in the model.

chunk Each item of the array shows chunk availability
contoTracker The status of connectivity to the tracker
conToP Each item of the array shows the status of connectivity to neighbours
peerDegree Number of peers to which a connection should be established
downloadBandwidth Download bandwidth in terms of chunk
uploadBandwidth Upload bandwidth in terms of chunk
isFreeRider When it is set to true, the peer acts as a free-rider
leaveSysAfterBecomeSeed When it is set to true, the peer leaves the system after becoming seed

BitTorrent protocol in Timed Rebeca We implement a simplified model of BitTorrent in Timed Rebeca. (See the pseudo code
in Listing 7 in Appendix B.) In our model, we abstract the dynamic creation of peers which means all peers constructing a
network should be determined at the beginning of the simulation. So, new peers cannot join the network during simulation.
Also, joined peers cannot leave the system, except some peers after becoming seeds with a low probability.

Fig. 14 depicts the event graph of connecting a peer to the tracker. In BitTorrent, when a peer wants to download a
file, it first contacts a centralized entity called tracker to get a random list of peers in the system. Our model has a rebec
t1 instantiated from the reactive class tracker that shows the tracker in the protocol and n rebecs instantiated from the
reactive class peer. The value of n determines the number of peers in the system that are interested in downloading a
file. We consider peer p1 to show how we implement different parts of the BitTorrent protocol in Timed Rebeca. Peer p1
is initialized by setting values to some statevars, described in Table 4, and sending message connectTracker to itself. Then,
it sends a connection request to rebec t1 by sending a message requestConnection to it. The deadline for the message to
be served is requestDeadlineForConTracker time units. Tracker t1 will respond to this request by sending a message request-
Answered to peer p1 after networkDelay time units. This delay represents the time needed for establishing a connection in
the network. After checkConTracker time units, peer p1 will check the connection request status by sending checkContoTracker
to itself. If it has not received any reply from the tracker t1, it resends the connection request after retryConTracker time
units.

Event graph of connecting a peer to other peers in its list is represented in Fig. 15. After connecting to the tracker and
getting the random list of peers that exist in the system, p1 should establish a connection to these peers by sending a start
message to itself. Indeed, in our model peers do not obtain the random list of peers from tracker t1; instead we determine
it as the knownrebecs for each peer in the main part. Also, each peer has a connection degree which is specified in the
main part. This illustrates the number of peers in the list to which the connections should be established. Therefore, p1
requests connection to each of its peers by sending a message requestconFrom. The deadline for the message to be served
is requestDeadlineForConPeer time units. After checkConPeer time units, a peer will check its request status by sending a
checkConToP message to itself. Each peer has an array conToP which is used to save the status of its connections to the other
peers. If it has not received any reply from the peer, it will send again its request after retryConPeer time units. The other
peer responds to p1 by sending a message requestResponded to it. Receiving this message represents the establishment of a
connection.

Fig. 15 shows the event of requesting chunks from connected peers. After establishing connections, p1 starts downloading
all chunks which it does not have from the connected peers by sending a message chunkExchange to itself. After receiving
this message, p1 selects the connected peers non-deterministically and sends downloading requests to them by sending
a message requestChunkFrom for the chunks that it does not have. When a peer receives a downloading chunk request,
if it can reply to it, it will send a message requestChunkResponded to peer p1 after (chunkSize × networkDelay) time units.
This amount of time should elapse as downloading time of a chunk in the network. Peer p1 investigates the availability
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Fig. 15. Event graph of connecting to the peers and downloading chunks from them.

of its chunks after checkChunkPeriod time units by sending a message checkChunkAvailability to itself. Then, it requests
downloading chunks again for the ones that it could not download before by sending a message chunkExchange to itself.
This procedure means a downloading request should be responded after checkChunkPeriod time units, otherwise peer p1
will request chunks from other peers.

In Table 4, we list the variables of each peer which are used to implement different aspects of the protocol in our model.
In the following, we explain the download and upload bandwidth variables in more details.

When a peer requests downloading a chunk from its neighbours in chunkExchange message server, the value of the
downloadBandwidth variable is decreased by 1. It is increased by 1 when a downloading request is completed by receiving
a requestChunkResponded message. In the requestChunkFrom message server, if the peer is a free-rider or has left the system
because of becoming a seed, a download request cannot be responded by this peer and the download bandwidth of the
requesting peer should be released by sending a freedwBandwidth message to it. In the freedwBandwidth message server,
variable downloadBandwidth is increased by 1.

When a downloading request is received by getting requestChunkFrom, the uploading bandwidth is examined and if there
is enough bandwidth available, the value of the variable uploadBandwidth is decreased by 1 and the request is answered.
Also, when downloading a chunk is completed by getting requestChunkResponded message, the upload bandwidth of the
replier should be released by sending a freeupBandwidth message to it. In the freeupBandwidth message server, the value of
the variable uploadBandwidth is increased by 1.

Experimental results We describe the results of the simulations carried out to show the effect of different parameters on
our model. The experiment platform is 1.2 GHz Intel Core 2 with 2 GB of memory. Running operating system is windows 7,
and we use Erlang R13B04. As we described before, our BitTorrent model is a simplified model in which peers cannot join
or leave the system during simulation, except that some peers can leave the system after becoming seeds. Also, we do
not model the tit-for-tat mechanism. So, the achieved results cannot be compared with real measurements or performance
analyses in BitTorrent networks.

Each run will be executed until all peers in the network complete downloading a file. It is obvious that changing timing
parameters such as deadlines, and delays, depicted in Listing 7 as environment variables, can affect the overall download
time. But, our objective is to investigate the effect of file size, download to upload bandwidth ratio, number of peers, and
network delay on download time since an important performance measure from the user’s point of view is download time.
To show it, we organize 4 experiments which are explained in more detail in the following. So, we do not change deadlines
and delays during experiments. Table 5 illustrates the values of timing parameters which are used for all experiments (time
unit is in second).

For each scenario, we determine the neighbours of each peer to which a connection should be established. To do this, we
use a randomly generated undirected graph in which each peer has a degree between 4 and 6. A peer knows its neighbours
as known rebecs in the main part. Also, each peer can have some chunks of the file before connecting to the network, which
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Table 5
The values of timing parameters for all scenarios.

networkDelay 2
chunkSize 1
requestDeadlineForConTracker 4
checkConTracker 6
retryConTracker 10
requestDeadlineForConPeer 8
checkConPeer 6
retryConPeer 10
checkChunkPeriod 8

Table 6
Average download time of five different scenarios (topology and chunk availability) for different download/upload
ratios. We consider a network consisting of 10 peers. Time is given in seconds.

Download/upload ratio (2/1) (1/1) (1/2)

Download time for scenario 1 897.5 810.3 1076
Download time for scenario 2 990.7 963.5 868.1
Download time for scenario 3 787.6 755 844.2
Download time for scenario 4 973.1 738.2 770.9
Download time for scenario 5 1069 811 1300

Average download time (in sec.) 943.6 815.6 971.9

Table 7
Average download time of three different scenarios (topology and chunk availability) for different download/upload
ratios. We consider a network consisting of 20 peers. Time is given in seconds.

Download/upload ratio (2/1) (1/1) (1/2)

Download time for scenario 6 1235.5 1117.9 1238.7
Download time for scenario 7 1083.3 1432.8 1486
Download time for scenario 8 1528 1189.8 1351.7

Average download time (in sec.) 1282.3 1246.8 1358.8

are randomly specified in the main part. For the sake of clarity, a specific topology and chunk availability is called a scenario.
For all runs, a peer is chosen as a free-rider with the probability of 0.2. Also, a peer leaves the system after completing the
download with the probability of 0.2. The probabilistic behaviour can be modelled using nondeterministic assignment in
Rebeca which is choosing a value from a given set nondeterministically, and is implemented using the random function of
Erlang.

In the first experiment, we run five different scenarios, each of them with three different download to upload ratios. In
these scenarios, the network consists of 10 peers and the corresponding file is split up into eight chunks. Peer bandwidth
is based on the number of chunks that can be downloaded or uploaded, which is supposed to be set to six chunks for
all peers. We use the same value for peer bandwidth for all experiments. Table 6 demonstrates how download to upload
bandwidth ratio can affect download time. To have an accurate result, we average the obtained download times for each
ratio. We can find that when download and upload bandwidth have the same value, download time has the minimum
value. Since the number of connected peers to each peer, the number of chunks to be downloaded, and peer bandwidth are
supposed to be set to a small value, this bandwidth adjustment seems to be convenient.

The second experiment has the same values for the parameters as the first one, but for a network consisting of 20 peers.
Table 7 exhibits the results obtained from averaging download times of three different scenarios, each of them executed
for three different ratios. These scenarios differ from those we use in the first experiment due to the different number of
peers in the network. Tables 6 and 7 together provide a good insights about the effect of network size on download time for
different download to upload ratios. We define the overall download time of the system as the sum of download times of all
peers existing in the system. Therefore, download time should increase proportionally with network size. Comparing results
of the same ratio from the two tables reveals this consequence. Also, for the same reason as in the previous experiment,
when download and upload bandwidths have equal values, the minimum download time can be achieved.

The third experiment also has the same values for bandwidth, and network size as in the first one. According to the
results, the minimum download time can be obtained when download to upload bandwidth ratio is one. This ratio is set to
one for all the other scenarios. We run five scenarios, each of them with three different file sizes. Both topology and chunk
availability patterns are the same as the scenarios in the first experiment. Then, we average the achieved download times of
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Table 8
Average download time of five different scenarios (topology and chunk availability) with 10 peers and different
file sizes. Time is given in seconds.

File size 4 chunks 8 chunks 12 chunks

Downloading time for scenario 1 730.5 810.3 1157.1
Downloading time for scenario 2 530.1 963.5 884.01
Downloading time for scenario 3 465.4 755.01 1006.5
Downloading time for scenario 4 602.1 738.2 1260.8
Downloading time for scenario 5 634.1 811.03 1027.8

Average download time (in sec.) 592.4 815.6 1067.3

Table 9
Average download time of five different scenarios (topology and chunk availability) with 10 peers and different
network delays. Time is given in seconds.

Network delay 2 3 4

Download time for scenario 1 810.34 965 1104.7
Download time for scenario 2 963.5 1079.8 1074.2
Download time for scenario 3 755.01 1112.4 1142.7
Download time for scenario 4 738.2 1199.7 1023.3
Download time for scenario 5 811.03 1129.9 1202.9

Average download time (in sec.) 815.6 1089.2 1109.6

five scenarios related to each file size. We find that download time increases with file size since each peer should download
more chunks from connected peers in the system. Table 8 illustrates the achieved results.

In the last experiment, we investigate the effect of network delay on download time. To perform it, we utilize the same
scenarios as in the first experiment i.e. the same topology and chunk availability patterns. The number of peers, file size,
and peer bandwidth are set to 10, 8, and 6 respectively. Also, download to upload ratio is supposed to be assigned to 1.
We run our five scenarios for three times, each of them with a different network delay. Network delay specifies how long
it takes for a bit to be disseminated across the network from one node to another. So, changing it should affect the needed
time in which a chunk is downloaded in the network and, therefore, the overall download time of the system. The achieved
results, depicted in Table 9, show the same outcome.

In Tables 6, 7, 8, and 9 although the last row representing the average download time shows the results as expected,
some of the rows seem to show some discrepancies. The reason for such results is that the performance of the model
depends on a few parameters that can change the expected outcome. Some of these parameters are determined in run-time.
In each scenario, the following parameters are variable and can affect the outcome: topology of the model, chunk availability,
free-riding and leaving the network after becoming a seed. Considering these parameters, the average downloading time
increases when a node is waiting for chunks which are unavailable on its neighbours, and/or most of its neighbours are
free-riders, and/or leave the system immediately after becoming a seed (after completing downloading chunks). Also, if
a chunk becomes available on a non-free-rider neighbour only after a long time then the average downloading time will
increase.

In summary, in the previous experiments we investigated the effect of download to upload ratio, network size, file size,
and network delay on the overall download time of the system. Fig. 16 summarizes our results. Fig. 16(a) shows how
downloading time changes based on network size. Also, Fig. 16(a) represents the changes in downloading time according
to download/upload ratio. Fig. 16(b) shows how file size can effect the average downloading time. Fig. 16(c) represents
the effect of delay in the network on the downloading time. The results show that our model can capture the features of
the protocol correctly. In order to obtain more accurate results, we need to add more details to the model. Our plan is to
implement tit-for-tat as a peer selection mechanism and different piece selection algorithms, and add dynamic behaviour
such as dynamic creation of peers to the model.

6. Related work

Different approaches are used in designing formal modelling languages for real-time systems.

Timed automata The model of timed automata, introduced by Alur and Dill [12], has established itself as a classic formal-
ism for modelling real-time systems. The theory of timed automata is a timed extension of automata theory, using clock
constraints on both locations and transitions.

UPPAAL is a toolbox based on timed automata. The language describes systems as networks of timed automata with
extension of data variables [30]. The simulator allows the modeller to examine the state space during the early stages of
development. The model checking tool provides verification by means of exhaustive checking of the state space generated
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Fig. 16. Average downloading time according to Tables 6, 7, 8, and 9.

by the model. The model checking tool is supported by a specification language to check for reachability properties. UPPAAL
allows us to model synchronous time varying behaviours while Timed Rebeca focuses on distributed and asynchronous
agents. There has been some work on verification of Timed Rebeca models by means of translation to UPPAAL but simple
models run into state explosion problem [19].

Real-time Maude Maude is a high level declarative programming language. It supports executable specification and program-
ming in rewriting logic. Moreover, it supports equational logic and algebraic specification. It can deal with nondeterministic
concurrent computations and has support for concurrent object oriented computation models [31]. Real-time Maude is an
extension to Maude. It supports both discrete and dense time domains. As with Maude, zero-time transitions are defined
with rewrite rules while time elapse is defined by tick rewrite rules. The real-time Maude offers timed rewriting for simu-
lations, timed search for reachability analysis and time bounded LTL model checking [32].

Timed Rebeca and real-time Maude are different in the computational paradigms that they naturally support. Real-time
Maude is a low level and powerful language. It allows modellers to control what computational model they base their model
on, as long as it can be expressed in rewriting logic. Timed Rebeca is based on actor based model of computation. Timed
Rebeca benefits from its similarity with other commonly used programming languages and is more susceptible to get used
by modellers without intimate knowledge of the theory behind modelling.

In the following we discuss related work on real-time actor-based modelling languages.

RT-synchronizer A real-time actor model, RT-synchronizer, is proposed in [16], where a centralized synchronizer is respon-
sible for enforcing real-time relations between events. Actors are extended with timing assumptions, and the functional
behaviours of actors and the timing constraints on patterns of actor invocation are separated. The semantics for the timed
actor-based language is given in [17]. Two positive real-valued constants, called release time and deadline, are added to the
send statement and are considered as the earliest and latest time when the message can be invoked relative to the time that
the method executing the send is invoked. In Timed Rebeca, we have the constructs after and deadline, which are represent-
ing the same concepts, respectively, except that they are relative to the time that the message (itself) is sent. So, it more
directly reflects the computation architecture including the network delays. In our language, it is also possible to consider
a time delay in the execution of a computation where in [17] it is possible to specify an upper bound on the execution
time of a method. While RT-synchronizer is an abstraction mechanism for the declarative specification of timing constraints
over groups of actors, our model allows us to work at a lower level of abstraction. Using Timed Rebeca, a modeller can
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easily capture the functional features of a system, together with the timing constraints for both computation and network
latencies, and analyze the model from various points of view.

Schedulability for Rebeca models There is also some work on schedulability analysis of actors [33], but this is not applied on
a real-time actor language. Time constraints are considered separately. Recently, there have been some studies on schedula-
bility analysis for Rebeca models [34]. This work is based on mapping Rebeca models to timed automata and using UPPAAL
to check the schedulability of the resulting models. Deadlines are defined for accomplishing a service and each task spends
a certain amount of time for execution. In the above-mentioned papers, modelling of time is not incorporated in the Rebeca
language.

Creol Creol is a concurrent object-oriented language with an operational semantics written in an actor-based style, and
supported by a language interpreter in the Maude system. In [35], Creol is extended by adding best-case and worst-case
execution time for each statement, and a deadline for each method call. In addition, an object is assigned a scheduling
strategy to resolve the nondeterminism in selecting from the enabled processes. This work is along the same lines as the
one presented in [34] and the focus is on schedulability analysis, which is carried out in a modular way in two steps: first
one models an individual object and its behavioural interface as timed automata, and then one uses UPPAAL to check the
schedulability considering the specified execution times and the deadlines. In this work, network delays are not considered,
and the execution time is weaved together with the statements in a fine-grained way.

In [18] a timed version of Creol is presented in which the only additional syntax is read-only access to the global clock,
plus adding a data-type Time together with its accompanying operators to the language. Timed behaviour is modelled by
manipulating the Time variables and via the await statement in the language.

7. Future work

In this paper we have presented essentially two semantics for Timed Rebeca. One is the operational semantics given in
Section 2.1 that associates a transition system with each Timed Rebeca program. The other is implicitly given by the trans-
lation from Timed Rebeca to Erlang given in Section 3. The two semantics serve different purposes, the SOS semantics gives
a conceptual understanding of the behaviour of Timed Rebeca programs and this is the cornerstone for all the subsequent
work on Timed Rebeca—see, e.g., [36–38]. On the other hand, the semantics via translation to Erlang provided the first
implementation of Timed Rebeca and has paved the way to the simulation-based analysis of Timed Rebeca programs using
McErlang reported in Sections 4–5.

This begs the question of whether the Erlang encoding of Timed Rebeca into Erlang we proposed in this paper is “correct”
with respect to our reference SOS semantics. It would be desirable to establish an operational correspondence result or a
bisimulation relating the two semantics. This is, however, a major research challenge that we leave for future work. In
particular, in order to prove such a correspondence result we would need a yardstick formal semantics for Erlang (such as
the one presented in [39]).

The work reported in this paper paves the way to several interesting avenues for future work. In particular, we have
already started modelling larger real-world case studies and analyzing them using our tool. We plan to explore different
approaches for model checking Timed Rebeca models. It is worth noting that the translation from Timed Rebeca to Erlang
immediately opens the possibility of model checking untimed Rebeca models using McErlang. This adds yet another compo-
nent to the verification toolbox for Rebeca, whose applicability needs to be analyzed via a series of benchmark examples. As
mentioned in the paper, McErlang supports the notion of time only for simulation and not in model checking, and therefore
cannot be used as is for model checking Timed Rebeca models. We plan to explore different ways in which McErlang can be
used for model checking Timed Rebeca. One possible solution is to store the local time of each process and write a custom-
made scheduler in McErlang that simulates the way the Timed Rebeca scheduler operates. We have been in contact with
the team working on McErlang [40] and they developed a prototype to support time. This work is still in its preliminary
stages.

The formal semantics for Timed Rebeca presented in this paper is also used in another parallel line of work [19]. The aim
of that study is to map Timed Rebeca to timed automata [12] in order to use UPPAAL [20] for model checking Timed Rebeca
models. The translation from Timed Rebeca to timed automata will be integrated in our tool suite. We are also working on
a translation of Timed Rebeca into (real-time) Maude. This alternative translation would allow designers to use the analysis
tools supported by Maude in the verification and validation of Timed Rebeca models. Our long-term goal is to have a tool
suite for modelling, executing, simulating, and model checking asynchronous object-based systems using Timed Rebeca.
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Appendix A. Rebeca model for the sensor network

1 env int netDelay;
2 env int adminCheckDelay;
3 env int sensor0period;
4 env int sensor1period;
5 env int scientistDeadline;
6 env int rescueDeadline;
7
8 reactiveclass Sensor {
9 knownrebecs {

10 Admin admin;
11 }
12
13 statevars {
14 int period;
15 }
16
17 msgsrv initial(int myPeriod) {
18 period = myPeriod;
19 self.doReport();
20 }
21
22 msgsrv doReport() {
23 int value;
24 value = ?(2, 4); // 2=safe gas levels, 4=danger gas levels
25 admin.report(value) after(netDelay);
26 self.doReport() after(period);
27 }
28 }
29
30 reactiveclass Scientist {
31 knownrebecs {
32 Admin admin;
33 }
34
35 msgsrv initial() {}
36
37 msgsrv abortPlan() {
38 admin.ack() after(netDelay);
39 }
40 }
41
42 reactiveclass Rescue {
43 knownrebecs {
44 Admin admin;
45 }
46
47 msgsrv initial() {}
48
49 msgsrv go() {
50 int msgDeadline = now() + (rescueDeadline-netDelay);
51 int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
52 delay(excessiveDelay);
53 admin.rescueReach() after(netDelay) deadline(msgDeadline);
54 }
55 }
56
57 reactiveclass Admin {
58 knownrebecs {
59 Sensor sensor0;
60 Sensor sensor1;
61 Scientist scientist;
62 Rescue rescue;
63 }
64
65 statevars {
66 boolean reported0;
67 boolean reported1;
68 int sensorValue0;
69 int sensorValue1;
70 boolean sensorFailure;
71 boolean scientistAck;
72 boolean scientistReached;
73 boolean scientistDead;
74 }

Listing 6. A Timed Rebeca model of the sensor network example.
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75
76 msgsrv initial() {
77 self.checkSensors();
78 }
79
80 msgsrv report(int value) {
81 if (sender == sensor0) {
82 reported0 = true;
83 sensorValue0 = value;
84 } else {
85 reported1 = true;
86 sensorValue1 = value;
87 }
88 }
89
90 msgsrv rescueReach() {
91 scientistReached = true;
92 }
93
94 msgsrv checkSensors() {
95 if (reported0) reported0 = false;
96 else sensorFailure = true;
97
98 if (reported1) reported1 = false;
99 else sensorFailure = true;

100
101 boolean danger = false;
102 if (sensorValue0 > 3) danger = true;
103 if (sensorValue1 > 3) danger = true;
104
105 if (danger) {
106 scientist.abortPlan() after(netDelay);
107 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to answer
108 }
109
110 self.checkSensors() after(adminCheckDelay);
111 }
112
113 msgsrv checkRescue() {
114 if (!scientistReached) {
115 scientistDead = true; // scientist is dead
116 } else {
117 scientistReached = false;
118 }
119 }
120
121 msgsrv ack() {
122 scientistAck = true;
123 }
124
125 msgsrv checkScientistAck() {
126 if (!scientistAck) {
127 rescue.go() after(netDelay);
128 self.checkRescue() after(rescueDeadline);
129 }
130 scientistAck = false;
131 }
132 }
133
134 main {
135 Sensor sensor0(admin):(sensor0period);
136 Sensor sensor1(admin):(sensor1period);
137 Scientist scientist(admin):();
138 Rescue rescue(admin):();
139 Admin admin(sensor0, sensor1, scientist, rescue):();
140 }

Listing 6. (continued)
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Appendix B. Timed Rebeca model for BitTorrent protocol

1 env int networkDelay;
2 env int chunkSize;
3 env int requestDeadlineForConTracker;
4 env int checkConTracker;
5 env int retryConTracker;
6 env int requestDeadlineForConPeer;
7 env int checkConPeer;
8 env int retryConPeer;
9 env int checkChunkPeriod;

10
11 reactiveclass Peer(3)
12 {
13 knownrebecs
14 {
15 Tracker t1; // a centralized entity that gives the list of peers to be connected
16 Peer peer[6]; // peers to be connected
17 }
18 statevars
19 {
20 boolean chunk[8]; //shows the availability of chunks for peer
21 int token; int peerToken[6];
22 boolean contoTracker;
23 boolean conToP[6];
24 int peerDegree; // number of connected peers
25 int downloadBandwidth;
26 int uploadBandwidth;
27 boolean isFreeRider;
28 boolean leaveSysAfterBecomeSeed;
29 }
30 msgsrv initial(int degree, boolean cnk[])
31 {
32 peerDegree = degree;
33 for(int i=0; i < 8; i++)
34 chunk[i] = cnk[i]; // we can set the availability of chunks for peer
35 downloadBandwidth = 4;
36 uploadBandwidth = 2;
37 int fRiding = ?(1:5);
38 if (fRiding == 2)
39 {
40 isFreeRider = true;
41 downloadBandwidth =downloadBandwidth + uploadBandwidth;
42 }
43 self.connectTracker();
44 }
45 msgsrv connectTracker()
46 {
47 token+=1;
48 t1.requestConnection(token) deadline(now()+requestDeadlineForConTracker);
49 self.checkContoTracker() after (checkConTracker);
50 }
51 msgsrv requestAnswered(int tok)
52 {
53 if (token==tok)
54 contoTracker=true;
55 }
56 msgsrv checkContoTracker()
57 {
58 if(!contoTracker)
59 self.connectTracker() after(retryConTracker);
60 else if(contoTracker)
61 self.start();
62 }
63 msgsrv start()
64 {
65 for(int i= 0; i < 4; i++)
66 self.consToPeers(i);
67 if(peerDegree ==5)
68 self.consToPeers(4);
69 else if(peerDegree ==6)
70 {
71 self.consToPeers(4);
72 self.consToPeers(5);
73 }
74 self.chunkExchange();
75 }

Listing 7. A Timed Rebeca model of BitTorrent protocol presented in pseudo code.
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76 msgsrv checkChunkAvailability()
77 {
78 if(downloadBandwidth == 0)
79 downloadBandwidth = downloadBandwidth+1;
80 if(!chunk[0] || !chunk[1] || !chunk[2] || !chunk[3] || !chunk[4] || !chunk[5] || !chunk[6] ||

!chunk[7])
81 self.chunkExchange();
82 }
83 msgsrv chunkExchange()
84 {
85 for (int i =0; i <8; i++)
86 {
87 if(peerDegree ==4)
88 int choosePeerForCh = ?(0:3);
89 else if(peerDegree ==5)
90 int choosePeerForCh = ?(0:4);
91 else if(peerDegree ==6)
92 int choosePeerForCh = ?(0:5);
93 if (!chunk[i] && downloadBandwidth > 0)
94 {
95 if (conToP[choosePeerForCh])
96 {
97 peer[choosePeerForCh].requestChunkFrom(i);
98 downloadBandwidth = downloadBandwidth-1;
99 }

100 }
101 }
102 self.checkChunkAvailability() after(checkChunkPeriod);
103 }
104 msgsrv freeDwBandwidth()
105 {
106 downloadBandwidth = downloadBandwidth+1;
107 }
108 msgsrv requestChunkFrom(int chunkn)
109 {
110 if (!isFreeRider && !leaveSysAfterBecomeSeed)
111 {
112 if(uploadBandwidth > 0 && chunk[chunkn])
113 sender.requestChunkResponded(chunkn) after(chunkSize*networkDelay);
114 }
115 else if(isFreeRider || leaveSysAfterBecomeSeed)
116 sender.freedwBandwidth();
117 }
118 msgsrv freeUpBandwidth()
119 {
120 uploadBandwidth = uploadBandwidth+1;
121 }
122 msgsrv requestChunkResponded(int chunkn)
123 {
124 if(!chunk[chunkn])
125 {
126 chunk[chunkn]=true;
127 downloadBandwidth=downloadBandwidth+1;
128 sender.freeUpBandwidth();
129 }
130 if(chunk[0] && chunk[1] && chunk[2] && chunk[3] && chunk[4] && chunk[5] && chunk[6] && chunk[7])
131 {
132 int leavingProbability = ?(1:5);
133 if(leavingProbability == 3)
134 leaveSysAfterBecomeSeed = true;
135 else
136 uploadBandwidth= uploadBandwidth + downloadBandwidth;
137 }
138 }
139 msgsrv consToPeers(int peerNumber)
140 {
141 peerToken[peerNumber]+=1;
142 peer[peerNumber].requestconFrom(peerToken[peerNumber])

deadline(now()+requestDeadlineForConPeer);
143 self.checkConToP(peerNumber) after(checkConPeer);
144 }

Listing 7. (continued)
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145 msgsrv checkConToP(int peerNumber )
146 {
147 if(!conToP[peerNumber])
148 {
149 self.consToPeers(peerNumber) after(retryConPeer);
150 }
151 }
152 msgsrv requestconFrom(int tok)
153 {
154 sender.requestResponded(tok) after(networkDelay);
155 }
156 msgsrv requestResponded(int tok)
157 {
158 for(int i=0; i<peerDegree; i++)
159 {
160 if(sender == peer[i])
161 {
162 if(peerToken[i]==tok)
163 conToP[i]=true;
164 }
165 }
166 }
167 }
168 //-------------------------------------------------------------- tracker
169 reactiveclass Tracker (3)
170 {
171 knownrebecs{
172 Peer p[10];
173 }
174 statevars {}
175 msgsrv initial(){}
176 msgsrv requestConnection(int token)
177 {
178 sender.requestAnswered(token) after(networkDelay) ;
179
180 }
181 }
182
183 main
184 {
185 Peer p1(t1,[p2,p3,p4,p9,p7,p8]):(4,[true, false, false, false, false, false, false, false]);
186 Peer p2(t1,[p1,p5,p6,p7,p10,p2]):(5,[false,false, false, false, true, true, false, false]);
187 Peer p3(t1,[p1,p4,p6,p7,p8,p3]):(5,[false, false, true, true, true, false, false, true]);
188 Peer p4(t1,[p1,p3,p8,p9,p4,p5]):(4,[true, false, false, false,true, false, false, true]);
189 Peer p5(t1,[p2,p6,p7,p10,p8,p9]):(4,[false,true, true, true, false, true, true, true]);
190 Peer p6(t1,[p2,p3,p5,p7,p8,p]):(5,[true, false, true, true, false, false, false, false]);
191 Peer p7(t1,[p2,p3,p5,p6,p9,p10]):(6,[false,true, true, true, false, false, false, true]);
192 Peer p8(t1,[p3,p4,p6,p9,p10,p5]):(5,[false,true, false, true, false, true, false, false]);
193 Peer p9(t1,[p1,p4,p7,p8,p3,p2]):(4,[false, false, true, true, false, true, true, false]);
194 Peer p10(t1,[p2,p5,p7,p8,p3,p4]):(4,[false,true, false, true, false, false, false, true]);
195 Tracker t1([p1,p2,p3,p4,p5,p6,p7,p8,p9,p10]):();
196 }

Listing 7. (continued)
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